A Study on Algebraic Attacks over Stream Cipher

Journal of Emerging Trends in Computer Science and Applications (JETCSA), Volume 1 (Issue 2:
May-August, 2025): Pages 17-24; Published on: September 10, 2025.

5
9

souradof e ISSN: 3107-9040 (Online)
[SMseyesuiid  Journal of Emerging Trends in Computer Science and Applications(JETCSA)
- Contents available at: https://www.swamivivekanandauniversity.ac.in/jetcse/

A Study on Algebraic Attacks over Stream Cipher

Mr. Subrata Nandi!

LDepartment of Computer Science and Engineering, Swami Vivekananda University, Barrackpore-700121, WB,
INDIA

ABSTRACT

There are several known-plaintext attacks(KPA) on Stream cipher. Algebraic Attack is one kind of KPA. In this
paper, we study the fundamental aspects of algebraic attack on Stream Cipher. We also study one of the
important property related to Algebraic Attack, Algebraic Immunity.
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I. INTRODUCTION

Stream ciphers play a crucial role in security in wireless communication. To produce the ciphertext

bits, it does bitwise-XOR between plaintext bits and the pseudorandom bits(keystream). Stream
cipher A5/1 was used in 2G mobile communication, and SNOW 3G, ZUC ciphers[1] are used for
4G and 5G mobile communication to restore confidentiality and integrity. The primary component
of the Stream cipher is the keystream generator(KSG). Linear Feedback Shift Register(LFSR) is a
very useful KSG. This is because of their low hardware cost, good statistical properties and good
periods. Nonlinear Function is used with LFSR to resist the KSG from BMA attack.

Attacks against stream cipher are another threat. Algebraic attack is one of the attacks that
Courtois and Meier[2] on EUROCRYPT 2003. There are two fundamental models of stream
ciphers: combiner generator and filter generator, where a nonlinear boolean function f takes
important roles to generate pseudorandom bits. It can be observed [3] that If a function f or its
complement 1 + f'has low degree annihilators, one can construct equations of degree equal to the
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degree of the annihilators. So, the designer should not use such boolean functions of having
lowdegree annihilators. To resist algebraic attack, algebraic immunity(Al) [4] takes a significant
role. Al is nothing but the minimum degree annihilator between for 1 + . Details of the study on
algebraic immunity will be discussed in a later section.

A) Literature Survey

Algebraic Attack was ideated by Courtois [2] in 2003. It found vulnerabilities in Toyocrypt, LILI-
128 ciphers. This article[5] explains theoretical analysis regarding the algebraic immunity of
nonlinear boolean functions. Later, Billet [6] explains the algebraic attacks on the cipher SNOW
2.0 in time complexity 2°!. In addition to that, [7] improved the attack with time complexity 22,
Besides, [8] mentions the algebraic attack on the Welch-Gong family of stream ciphers. The article
[9] attacks Bluetooth stream cipher Eo with 27° time complexity using SAT solver, Binary Decision
Diagram and Grobner Basis. In this article, we explain the basics of Algebraic Attack.

II. PRE-REQUISITES

Here, we study some definitions and properties of Boolean functions. Weight wt(x) of a vector
2

x in Fn is the number of one count in x. Let f'be a n variable boolean function defined

as follows f: V, — F»

where Vr is the domain of n dimensional vector space and F2 is the binary field of 2 elements. The
hamming distance between two boolean functions f and g of n variable is wt(f + g). The degree
of a Boolean function is defined as the length of the longest monomial in its polynomial

representation.

If f is a variable, then a boolean function's algebraic normal form representation is The ring F2
[x1,x2,....,sn]/<x12 —x1,x22 — x2, ..., xn2 — xn > can be used to describe boolean functions
in the polynomial form over the field F2 with n many indeterminates x1, x2, ..., xn, f f(x1, x2,
e, xn) aixi ai xi+ -+ ail,...inxil ... xin—1+al,...,nx1 ... xn i=1 1<i<j<n where a0,
al, ..., al,...,n € F2 are called the coefficient of the respective monomials. Boolean functions
f1and f2 are defined as follows: d(f1, f2) =| {x € Fn2 |f1(x) # f2 (x)|. The cryptographic
boolean function depends on the Walsh coefficient of a vector. This definition applies to any
vector u that is a member of
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Fn2: 3 (—1)f(x)P = WFf (u) <ux>

xEFnl

A Boolean function nil(f) 1s said to be nonlinear if
nl(f) = {mind(f, 1) |deg=i(D)< 1}
It can also be defined to ywalsh coefficient like the following:

1
i) = 271 == mag W, (u)

2 uE[FQ

A) Algebraic Attack on NLFSR

The section currently available on creating low-degree algebraic equations will be discussed in
this section. This algebraic attack is feasible with two fundamental LFSR-based stream cipher
models like a nonlinear filter generator and a nonlinear combiner. Assume that a linear update
function, represented by k bit LFSRs, is used in the model.

L: Fn2— [Fn2

Attacker
| attack

| LFSR 1 |

| LFsR2 | | }—\’ f"‘-x\'—r 7,

‘ LFSR N ‘ ‘

Fig. 1. Nonlinear Combiner Generator

Let SO = {s0, s1, ..., sk—1} be the initial state. The keystream output will be zt = f(St ), t > 0 at
the t -th clock, where f is the nonlinear function. The state when the linear function L is applied
to the state S 0 t times is shown by the equation S t = Lt (S 0). Restoring the starting state is the
issue. S0 is equal to {s0, s1, ..., sk—1}. Some keystream bits (e.g., zk1, zk2, ..., zkl) are known
if an attacker exploits the known plaintext attack. Therefore, it is simpler to create a system of
equations with degree equal to degi/oi(f) in the manner described below:
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- fﬁLkl(S o)) = zki
f(LR2(5%)) = ziz

flLu(S50)) = zk

The system of equations will be more challenging to solve in terms of time if the degree of the
nonlinear functions f is high. Low-degree equations can be constructed by exploiting a flaw in
the fundamental structure of nonlinear functions. We know that f(Lt (S 0)) = f(S t ) = zt. The
fundamental idea [10] is to use low-degree multiples and annihilators of the nonlinear function f
to construct a low-degree equation. Therefore, the degree of fg will be minimized by multiplying
f(S t), which is usually of high degree, by a well chosen function g(S t).

1. if zz= 1. any function g m AN(f) leads to g(L*(5 %)) = 0.

2. ifze=0,any fonctionhin AN(1 4+  f)leadsto h(L*(5°)= 0.

Thus, if we can collect the relations to all functions of degree at most d (obviously <
deg/0i(f)) in AN(f) + AN(1 + f) for known L keystream bits, we can derive a reduced
degree equation on n variables x1, x2, ..., xn. Thus, we may recover the bits of the
original state by solving the multivariate polynomial problem.
Definition II.1. A Boolean function g over F"2 is an annihilator AN(f) of a Boolean function f
over

[Fny if
fg="0

The degree of the Boolean function g over Fn2, where g is a nonzero function of lowest degree
such that fg =0 or (1 + f)g = 0, is the algebraic immunity AI(f) of a Boolean function f over
Fn2.

[7] For each function f over F, it is known.

In commutative algebra and computational algebraic geometry, solving the system of multivariate
algebraic equations is a crucial topic. Even if the basis field is 2 and all the equations are
quadratic, the issue is NP-complete. XL, XSL, and Grobner basis algorithms are some of the
methods now in use to solve those multivariate equations (F4, F5).
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B) Theoretical Results on Algebraic Immunity

Theorem II.1. [4] Let f € Bn (set of n variable Boolean functions) and Al (f) = d. Then

d n—(d+1)
Z () sween < Z

Proof. Let f has an annihilator g of degree d. Let the ANF of g 15

10 10
a’ ai Xi aixi+ o+ Qiloid Xil ... Xid
i=1 L=i<j<n

where [F2 is where the a's are. Since g € AN(f), we are aware that f(x) = 1 implies g(x) = 0. The
number of homogeneous equations on the a's will be wt(f).

We can identify annihilators g of degree < d on nontrivial solutions by solving the system of
homogeneous linear equations. Since we are interested in nonzero g, we are not interested in the

trivial case, when all of the a's are equal to zero.

d ni
Here, we Li=o ( ) have number of variables and wt(f) many equations. We shall obtain
nontrivial answers if the number of variables surpasses the number of equations. As a result, f has
no annihilator g of degree d, suggesting that there are more equations than variables. Therefore, a
minimum of Y di=0 (ni) equations must exist, i.e., wt(f) > Y di=0 (ni). Likewise, when

considering 1 + f.we get wi(l + f) = Y=o ). From this we
can say, wt(1 + f) = 2n—
(), osz() T

Le. wt i

It also gives alternative proof [4]A47 (f) = [ 1. The inequality in the above theorem
will not be 2
n satisfied if d > sl g — (d + 1) =d=d
= [ 1. Itis ¢ observed that for any f the inequality in 2
nthe
above theorem will not be satisfied if Al (f) = d
= [2]-
The theorem's opposite isn't always accurate. For instance, the affine functions have linear
annihilators  but are  balanced, @ meaning their weight 15 2n - 1)

The following results provide a bound on wt(f) based on the aforementioned theorem, where f of
1 + f do not n have annihilators of degree smaller than [ |.
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n

Corollary IT.1.1. Al (f) = [:] implies

1. f 1s balanced when n 1s odd

n

-1 n

3 Li=o (1) swt(f) =X, when n is even.

Theorem I1.2. If nl(f) <¥d=o ("), then Al (f)<d + 1[4].

(4 _pn—k n—1
Theorem IL3. [11]Let f € Bpand Aln(f) = k. Theam) =27~ 1) R G

- -1
25 (M)
()
We derive a number of homogeneous linear equations wt(f) using the a's from the previous
description. This system of equations' coefficient matrix will be shown as M. A number of rows in
M then contain wt(f).

d n ni inin ni i . d
Li=o ( ) and . The rank(say, r ) of the matrix mm{wt(f),zlﬂ ( )} M.r =
1. If r. then there 1s no annihilator of degree < d .
= E:'Ln ( )} 2. If r, then annihilators of degree <d exist. Numerous linearly
independent annihilators with degree < d will exast.
<y, ( )} The_ npmber of annihilators and ]ji_lea_rly independent v, ( ) _
annihilators for any Boolean function f are 2wt(1+f) - 1
and wt(1 + f). It is assumed that Mn.d (f) is the matrix representation of the boolean function
f with n variables and algebraic degree d. The row and column count of the matrix are wi(f).
and

d n
t=0 ( ) i respectively. An algorithm for Algebraic Immunity (AI) of Boolean function f

. Algorithm 1 Find Algebraic Immunity of a Boolean Function .
18 for i =1 — [2] do given below.
Find the rank R, of the matrix M,, ;(f).
Find the rank Ry of the matrix M, ;(1 + f).
if min{ Ry, R} < 375, (’7’) then
Output ¢
end if
end for
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If f is a balanced boolean function, the time complexity of the above algorithm is approximately
(2n-2)3.

ITII. CONCLUSION

This article examines the Algebraic Immunity trait and Algebraic assaults on Stream Cipher. We
know that low algebraic degree Boolean functions are vulnerable to cryptanalysis. It might be a
better problem to provide an efficient algorithm than the current one because the algorithm
described above, which finds algebraic immunity of the Boolean function, is exponential.
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